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Abstract:

In this paper, we present a methodological framework for conceptual modeling of assembly supply chain (ASC)
networks. Models of such ASC networks are divided into classes on the basis of the numbers of initial suppliers.
We provide a brief overview of select literature on the topic of structural complexity in assembly systems.
Subsequently, the so called Vertex degree index for measuring a structural complexity of ASC networks is
applied. This measure, which is based on the Shannon entropy, is well suited for the given purpose. Finally, we

outline a generic model of quantitative complexity scale for ASC Networks.

Introduction

Assembly supply chain (ASC) systems are
becoming  increasingly = complex due to
technological advancements and the wuse of
geographically diverse sources of parts and
components. One of the major challenges at the
early configuration design stage is to make a
decision about a suitable networked manufacturing
structure that will satisfy the production functional
requirements and will make managerial tasks
simpler and more cost effective. In this context any
reduction of redundant complexity of ASC is
considered as a way to increase organizational
performance and reduce operational inefficiencies.
Furthermore, it is known that higher complexity
degree of ASC systems makes it difficult to
manage material and information flows from
suppliers to end-users, because a small changes
may lead to a massive reaction. Nonlinear systems
that are unpredictable cannot be solved exactly and
need to be approximated. One way to approximate
complex dynamic systems is to transform them into
static structural models that could be evaluated

with graph-based methods. Thus, structural
complexity approaches that assess topological
properties of networks are addressed in this paper.

Structural complexity theory is a branch of
computational complexity theory that aims to
evaluate systems’ characteristics by analysing their
structural design. In structural complexity the main
focus is on complexity classes, as opposed to the
study of systems behaviour to be conducted more
efficiently. According to Hartman is [1]: “structural
complexity investigates both internal structures of
complexity classes, and relations that hold between
different complexity classes”. In this study our
main intent is to identify topological classes of
assembly supply chains (ASC). Our approach to
generate classes of ASCs is based on some specific
rules and logical restrictions described in Section 3.
Subsequently, in Section 4, we present a method to
compute the structural complexity of such
networks. Finally, in the Conclusions section, the
main contributions of our paper are mentioned.
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Related Works

Complexity theory has captured the attention of the scientific community across the World and its proponents
tout it as a dominant scientific trend [2]. According to EIMaraghy et al. [3], increasing complexity is one of the
main challenges facing production companies. Complexity of systems has been defined in several ways because
it has many aspects depending and on the viewpoint and context in which a system is analysed. For

example, Kolmogorov complexity [4,5] is based on success in terms of non/interference of

algorithmic information theory, which is related to
Shannon entropy [6]. Both theories use the same
unit—the bit— for measuring information.
Shannon’s entropy has been generalized in
different directions. For example, it has been
widely used in biological and ecological networks
[7-9].

Information  theories  consider  information
complexity as the minimum description size of a
system [10-12]. Related pertinent findings with
regards to the impact of organization size on
increasing differentiation have been expressed in
the literature [13—15]. These authors maintain that
increasing the differentiation of networks creates a
control problem of integrating the differentiated
subunits. According to Strogatz [16], the most
basic issues in the study of complex networks are
structural properties because structure always
affects function. Moreover, he adds that there are
missing unifying principles underlying their
topology. The lack of such principles makes it
difficult to evaluate of certain topological aspects
of networks, including complexity. Structural or
static complexity characteristics [17,18] are related
to the fixed nature of products, hierarchical
structures, processes and intensity of interactions
between functionally differentiated subunits. So-
called ‘layout complexity’ in this context is studied
that has a significant impact on the operation and
performance of manufacturing systems [19]. Hasan
et al. [20] argue that “a good layout contributes to
the overall efficiency of operations and can reduce
by up to 50% the total operating expenses”. On the
other hand, experiences show that managers prefer
to continue with the inefficiencies of existing
layouts rather than undergo expensive and time
consuming layout redesign.

The relationship between product variety and
manufacturing complexity in assembly systems and
supply chains has been investigated by several
authors [21-23]. Morse and You [24] developed
the method called Gap Space to analyse assembly

components. Zhu et al. [25] proposed a complexity
measure based on quantifying human performance
in manual mixed-model assembly lines where
operators have to make choices for wvarious
assembly activities. An original approach to
assessment of overall layout complexity was
developed by Samy [26]. He proposed an overall
Layout Complexity Index (LCI) which combines
several indices. Obviously, there are many other
research articles related to the topic of our paper.
Based on a previous analysis of the literature
sources it is possible to say that there are several
aspects by which one could examine assembly
supply chain complexity. In this paper, we propose
to compute structural complexity with reduced
effort using standardized classes of supply chain
networks.

Generating of Assembly Supply Chain Classes

An assembly-type supply chains is one in which
each node in the chain has at most one successor,
but may have any number of predecessors. Such
supply chain structures are convergent and can be
divided into two types, modular and non-modular.
In the modular structure, the intermediate sub
assemblers are understood as assembly modules,
while the non-modular structure consists only from
suppliers (initial nodes) and a final assembler (end
node). The framework for creating topological
classes of ASC networks follows the work of Hu et
al. [27] who outlined the way forward to model
possible supply chain structures, for example, with
four original suppliers as shown in Figure 1.

Figure 1. Possible ASC network with four initial suppliers (adopted from [27]).
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Generating all possible combinations of structures
creates enormous combinatorial difficulties. Thus,
it is proposed here to establish a framework for
creating topological classes of assembly supply
chains for non-modular and modular ASC networks
based on number of initial nodes “i” respecting the
following rules:

“ 2

1. The initial nodes in topological alternatives
are allocated to possible tiers tl (1= 1,...,m), ordered
from left to right, except the tier tm, in which a
final assembler is situated. We assume to model
ASCs only with one final assembler. In a case
when a real assembly process consists of more than
one final assembler (for example 3) then it is
advisable, for the purpose of the complexity
measuring, to split the assembly network into three
independent networks.

r.c EE)

2. The minimal number of initial nodes in the

first tier tl equals 2.

3. In case of non-modular assembly supply chain
structure, the number of initial nodes “i” in the
most upstream echelon is equal to the number of

individual assembly parts or inputs (in = 1,..., r).

Then, all possible structures for given number of
initial nodes “i” can be created. An example of
generating the sets of structures for the classes with
numbers of initial nodes from 2 to 6 is shown in

Figure 2.

The numbers of all possible ASC structures for
arbitrary class of a network can be determined by
the following manner. We first need to calculate
the sum of non-repeated combinations for each
class

of ASC structures through the so called the
Cardinal Number [28]. The individual classes are
determined by number of initial nodes “i”. Then,
for any integer v > 2, we denote Cardinal Number
by S(v) the finite set consisting of all q-tuples (v1, .

,vq) of integers v1, ..., vq>2 withvl +- - -+
vq < v, where q is a non-negative integer

Figure 2. Graphical models of the selected classes
of ASC structures.
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The Cardinal Number #S(v) of S(v) is equal to p(v)
— 1, where p(v) denotes the number of partition of
“v”, which increases quite rapidly with the number
of 1n1t1a1 nodes “i”. For instance, fori =2, 3, 4, 5,
6,7, 8,9, 10, the cardinal numbers #S(v) are given
by 1, 2, 4, 6, 10, 14, 21, 29, 41 (A000065
sequence), respectively [29]. Subsequently, for
each  non-repeated combination “K”, a
multiplication coefficient “M(K)” has to be
assigned. The combination “K” is established based
on the number of inputs to the final assembler “in”
which is situated in tier tm (see Figure 3).

Figure 3. The transition of graphical ASC networks
to the numerical combinations fori= 5.
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Then, Y M;—the number for all possible combinations of ASC structures for a given class ¢
obtained, This number 1 applied in Figure 4

Figure 4. Determination of tolal combinations of ASC networks refaed to the given classes.
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A critical step in determining all possible
combinations of ASC structures for a given class
(starting with a class for i = 2) are rules by which
we can prescribe a multiplication coefficient
“M(K)”. In the case when we consider the number
of initial nodes equals 2, there is only one
numerical combination K = (1;1) corresponding
with appropriate graphical model of assembly
supply chain structure, and thus M(1;1) = 1.
Similarly, for each non-repeated numerical
combination “K” an exact logic rule has to be
found. Accordingly we can formulate the following
rules:
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R1: If the numerical combination “K” consists only
of numeric characters (digits), assigned by symbol
“n”,n<2,e.g. K=(2;1) or K=1(2;2;1) then M(2;1)
or M(2;2;1) = 1. R2: If the numerical combination
“K” consists just of one digit “3” and other digits
are < 3, e.g.,, K = (3;1) or (3;2;2), then M(3;1) or
M(3;2;2) = 2. R3: If the numerical combination
“K” consists just of one digit “4” and other digits
are <3, e.g., K=(4;2), then M(4;2) = 5.

Equally, we could continue to determine
multiplication coefficients “My> for similar cases
when numerical combinations “K” consist just of
one digit > 5 and other digits are < 3 or do not
appear respectively. Then we would obtain the
following multiplication coefficients: M,y = 12
My = 33; M1y = 90; Mg,y = 261; etc.. The
multiplication coefficients for the given classes
>M) in such case, follow the Sloane Integer
sequence 1, 2, 5,..., 261, 766, 2312, 7068,...
(A000669 sequence) [30], and are depicted in
Table 1.

Table 1, Determination of all elevant aiematives for structural combinations of ASC nebworks,

The highest digit of combination set under ~ Number of alternatives for the

condition that other digits are < 3 given combinations
2 I
] 1
4 §
§ 20l
g Tt
1 1305788

For other cases the following rules can be applied:

R4: If the numerical combination “K” consists of
arbitrary number of non-repeated digits assigned as
“5k1,..., z” that are > 3 and other digits in the
combination are < 3 or do not appear respectively,
then the following calculation method can be used:

M()jklz=Mjx Mk x Mlx xMz,..., , ,, ,..., (1)

In order to apply this general rule under conditions
specified in R4 the following examples can be
shown: M() () )4;3=M4xM3=5x2=10(2)
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M() 000543 =MS5xM4xM 3 =12x5x 2 M= M M oM~ - 12 M =3 -2 2014

120 (3)
MO OO O)06:3:21=M6xM3xM2xMI RO: If the numerical combination “K” consists just
=33x 2x1x1 =66 (4) of three digits “4” and other digits are < 3 or do not

appear respectively, then M(4;4;4) = 15.
Calculation of this multiplication coefficient can be
formally expressed in this manner:

RS: If the numerical combination “K” consists just
of two digits “3” and other digits in the
combination are < 3 or do not appear respectively,
then M(3;3) = 3. Calculation of this multiplication
coefficient can be formally expressed in this

Mm.u :M(J it [Mu.u Mtu] T

manner: | [M“ ] MM [M(“ H |

Mg =Ms3z+ (M3 -1)=M;33=2+1=3 ®) }[M“ 0-My [M(“ ]] My ]

R6: If the numerical combination “K” consists just }[M“ o-My [M(“ 1] M- [Hm 3]]

of two digits “4” and other digits in the - o
combination are < 3 or do not appear respectively, }[M“ 0-My- My ] Mi-2 [HM 3] (My -I]]

then M(4;4) = 15. Thus, M(4;4) is computed
similarly to Equation (5):

Mty = M 4+ (Mg —1 )} (Mg — 2 + (My— 3) + (Ms — Mg =15+ 15-3)s [15-3- (- ) 15-3-(5-1)-(5- 2]
4) = Mg =5+4+3+2+1=15(6) 1[15-5-(3-1)(5-2)- (5-3)] 15-5-(5-1)- (5-2)=(5-3)-(5-4)] = 35

R7: If the numerical combination “K” consists just

of two digits “5” and other digits in the R10: If the numerical combination “K” consists
combination are < 3 or do not appear respectively, just of three digits “5” and other digits in the
then M(5;5) = 78 and the multiplication coefficient combination are < 3 or do not appear respectively,
is computed similarly as Equations (5) and (6): then Ms;s;s) = 78. Calculation of this multiplication

coefficient can be formally expressed in this

M(s,s) =M;+ (M5—1 )+ (Ms -2+ (M5— 3) + (Ms—
4)+ (M5—5 )+ (M5 - 6)

manner:

+ (Ms— 7) + (Ms— 8)+ (M5—9 )+ (M5 - 10)+ (Ms—

11) Mgy 12 +11+104+9+8+7+6+5+4+3+2+1= 78 Misss)= My (Mg = Mg

Analogously, we can calculate multiplication [ =M ={i - IJ]+
coefficients “M(K)” for arbitrary cases when +[M|s.s>—di;s;—(dm I] M- l
numerical combinations “K” consist just of two
digits n>3 and other digits in the combination are < +[M|s.srl1'fcsrw|) 1)~ (M- 2)- (M- H+
3 or do not appear respectively. For such cases we
can calculate the multiplication coefficients by this [ =M - -1)- 2 -3)- M“‘_”
-
-
-

equation: #[M sy Mg~ (M =)= (i -2) (Mg - 3)- (Mg -4)- (Mg -5+

(i

(i

( (

( (

Moy = My (M = 1) (M= 2 [~ (M 1) Mo~ M= 1) 2]t -3)- (0t -4)- o -5)- g -6
U -

[ (550 M\s; WH'I M= 2] [Mhl_:‘ Mﬁ\ WN 3] s 6}'\ |( 15~ J]
R8: If the numerical combination “K” consists just
of three digits “3” and other digits in the
combination are < 3 or do not appear respectively, Misss)=T84664 554454364284 2141541046+ 3+1=364
then M(3;3;3) = 4. Calculation of this
multiplication  coefficient can be formally

A general rule to calculate the multiplication
expressed in this manner:

coefficients “M(K)” for arbitrary cases (when
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numerical combinations “K” consist just of three
digits n > 3 and other digits in the combination are
< 3 or do not appear respectively) can be derived
using the previous rules R8, R9 and R10 a formally
can be expressed as:

Miya) = Migs) (M)~ Miy)4

[ M) = Moy = (M =1)] 4

[ My~ M) (wm (uu..l ...

F M =My = (M =1)= (M, = 2], AM (M - 1))

Obviously, there are other specific cases of
numerical combinations for which multiplication
coefficients can be formulated in exact terms.

The Concept of Quantitative Complexity Scale
for ASC Networks

Basically, the comparison of complexity is of a
relative and subjective nature. It is also clear that
through a relative complexity metric we can
compare the complexity of the existing
configuration against the simplest or/and the most
complex one from the same class of ASC network.
Perhaps, the most important feature of the relative
complexity metric is that we can generalize it to
other areas [35]. Accordingly, when we apply this
complexity measure for the complete graphs with
v(v—1)/2 edges we can get upper bounds for
configuration complexity of any ASC structure
with a given number of vertices. Obtained upper
bounds derived from complexity values of selected
complete graphs are shown in Figure 7.

Figure 7. Graph of the complexity measures for the selected complete graphs.
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When considering the fact that obtained complexity
values for the complete graphs grow larger and
larger, while complexity values of ASC structures

www.jbstonline.com

for ascending ordered classes grow smaller and
smaller it gives a realistic chance to establish
quantitative complexity degrees of ASC networks.
Under this assumption, arbitrary ASC networks can
be categorize into quantitative configuration
complexity degrees that are shown in Figure 8. In
such case, the actual question arises regarding how
many degrees of structural complexity are really
needed to comprise all ASCs that we know exists.
The seven-degree scale of structural complexity is
based on inductive reasoning. For example, upper
bound for configuration complexity of ASC
networks with i = 10 equals 40.04. Indeed, it is
very presumable that practically all realistic ASC
networks wouldn’t reach higher structural
complexity than 216 what presents structural
complexity for K9. However, in this context, it is
necessary to take under consideration a relation
between complexity and usability [36]. In this case
it would be needed to estimate an optimal degree of
structural complexity under when the usability of
ASC networks is critical for its success.

Figure 8. Proposed quantitatrve complexity degrees.
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The main contributions of this paper consist of the
following four aspects:

(1) A new exact framework for creating topological
classes of ASC networks is developed. This
methodological framework enables one to
determine all relevant topological graphs for any
class of ASC structure. The usefulness of such a
framework is especially notable in cases when it is
necessary to apply relative complexity metrics to
compare the complexity of the existing
configuration against the simplest or/and the most
complex one.

(2) In order to parameterize properties of vertices
of the ASC networks, an efficient method to
identify total number of the graphs with non-
repeated sets of vertex degrees structure is
presented. The determination of the non-repeated
sets of vertex degrees structure (for selected classes
of ASC networks are described in Figure 5) shows
that the total numbers of such graphs follows the
Omar integer sequence [37], with the first number
omitted.

(3) The Vertex degree index was applied to a new
area of configuration complexity.

(4) The quantitative object-oriented model for
defining degrees of configuration complexity of
ASC networks was outlined.

The proposed approach to relative complexity
assessment may easily be applied at the initial
design stages as well as in decision-making process
along with other important considerations such as
operational complexity issues. However, this
research path requires further independent research
to confirm this preliminary results and proposals.
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