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Abstract: 

 In this paper, we present a methodological framework for conceptual modeling of assembly supply chain (ASC) 

networks. Models of such ASC networks are divided into classes on the basis of the numbers of initial suppliers. 

We provide a brief overview of select literature on the topic of structural complexity in assembly systems. 

Subsequently, the so called Vertex degree index for measuring a structural complexity of ASC networks is 

applied. This measure, which is based on the Shannon entropy, is well suited for the given purpose. Finally, we 

outline a generic model of quantitative complexity scale for ASC Networks. 

Introduction 

Assembly supply chain (ASC) systems are 

becoming increasingly complex due to 

technological advancements and the use of 

geographically diverse sources of parts and 

components. One of the major challenges at the 

early configuration design stage is to make a 

decision about a suitable networked manufacturing 

structure that will satisfy the production functional 

requirements and will make managerial tasks 

simpler and more cost effective. In this context any 

reduction of redundant complexity of ASC is 

considered as a way to increase organizational 

performance and reduce operational inefficiencies. 

Furthermore, it is known that higher complexity 

degree of ASC systems makes it difficult to 

manage material and information flows from 

suppliers to end-users, because a small changes 

may lead to a massive reaction. Nonlinear systems 

that are unpredictable cannot be solved exactly and 

need to be approximated. One way to approximate 

complex dynamic systems is to transform them into 

static structural models that could be evaluated 

with graph-based methods. Thus, structural 

complexity approaches that assess topological 

properties of networks are addressed in this paper. 

 Structural complexity theory is a branch of 

computational complexity theory that aims to 

evaluate systems’ characteristics by analysing their 

structural design. In structural complexity the main 

focus is on complexity classes, as opposed to the 

study of systems behaviour to be conducted more 

efficiently. According to Hartman is [1]: “structural 

complexity investigates both internal structures of 

complexity classes, and relations that hold between 

different complexity classes”. In this study our 

main intent is to identify topological classes of 

assembly supply chains (ASC). Our approach to 

generate classes of ASCs is based on some specific 

rules and logical restrictions described in Section 3. 

Subsequently, in Section 4, we present a method to 

compute the structural complexity of such 

networks. Finally, in the Conclusions section, the 

main contributions of our paper are mentioned.  
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Related Works  

Complexity theory has captured the attention of the scientific community across the World and its proponents 

tout it as a dominant scientific trend [2]. According to ElMaraghy et al. [3], increasing complexity is one of the 

main challenges facing production companies. Complexity of systems has been defined in several ways because 

it has many aspects depending and on the viewpoint and context in which a system is analysed. For 

example, Kolmogorov complexity [4,5] is based on 

algorithmic information theory, which is related to 

Shannon entropy [6]. Both theories use the same 

unit—the bit— for measuring information. 

Shannon’s entropy has been generalized in 

different directions. For example, it has been 

widely used in biological and ecological networks 

[7–9].  

Information theories consider information 

complexity as the minimum description size of a 

system [10–12]. Related pertinent findings with 

regards to the impact of organization size on 

increasing differentiation have been expressed in 

the literature [13–15]. These authors maintain that 

increasing the differentiation of networks creates a 

control problem of integrating the differentiated 

subunits. According to Strogatz [16], the most 

basic issues in the study of complex networks are 

structural properties because structure always 

affects function. Moreover, he adds that there are 

missing unifying principles underlying their 

topology. The lack of such principles makes it 

difficult to evaluate of certain topological aspects 

of networks, including complexity. Structural or 

static complexity characteristics [17,18] are related 

to the fixed nature of products, hierarchical 

structures, processes and intensity of interactions 

between functionally differentiated subunits. So-

called ‘layout complexity’ in this context is studied 

that has a significant impact on the operation and 

performance of manufacturing systems [19]. Hasan 

et al. [20] argue that “a good layout contributes to 

the overall efficiency of operations and can reduce 

by up to 50% the total operating expenses”. On the 

other hand, experiences show that managers prefer 

to continue with the inefficiencies of existing 

layouts rather than undergo expensive and time 

consuming layout redesign. 

 The relationship between product variety and 

manufacturing complexity in assembly systems and 

supply chains has been investigated by several 

authors [21–23]. Morse and You [24] developed 

the method called Gap Space to analyse assembly 

success in terms of non/interference of 

components. Zhu et al. [25] proposed a complexity 

measure based on quantifying human performance 

in manual mixed-model assembly lines where 

operators have to make choices for various 

assembly activities. An original approach to 

assessment of overall layout complexity was 

developed by Samy [26]. He proposed an overall 

Layout Complexity Index (LCI) which combines 

several indices. Obviously, there are many other 

research articles related to the topic of our paper. 

Based on a previous analysis of the literature 

sources it is possible to say that there are several 

aspects by which one could examine assembly 

supply chain complexity. In this paper, we propose 

to compute structural complexity with reduced 

effort using standardized classes of supply chain 

networks. 

Generating of Assembly Supply Chain Classes  

An assembly-type supply chains is one in which 

each node in the chain has at most one successor, 

but may have any number of predecessors. Such 

supply chain structures are convergent and can be 

divided into two types, modular and non-modular. 

In the modular structure, the intermediate sub 

assemblers are understood as assembly modules, 

while the non-modular structure consists only from 

suppliers (initial nodes) and a final assembler (end 

node). The framework for creating topological 

classes of ASC networks follows the work of Hu et 

al. [27] who outlined the way forward to model 

possible supply chain structures, for example, with 

four original suppliers as shown in Figure 1. 
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Generating all possible combinations of structures 

creates enormous combinatorial difficulties. Thus, 

it is proposed here to establish a framework for 

creating topological classes of assembly supply 

chains for non-modular and modular ASC networks 

based on number of initial nodes “i” respecting the 

following rules:  

1. The initial nodes “i” in topological alternatives 

are allocated to possible tiers tl (l = 1,...,m), ordered 

from left to right, except the tier tm, in which a 

final assembler is situated. We assume to model 

ASCs only with one final assembler. In a case 

when a real assembly process consists of more than 

one final assembler (for example 3) then it is 

advisable, for the purpose of the complexity 

measuring, to split the assembly network into three 

independent networks. 

 2. The minimal number of initial nodes “i” in the 

first tier tl equals 2.  

3. In case of non-modular assembly supply chain 

structure, the number of initial nodes “i” in the 

most upstream echelon is equal to the number of 

individual assembly parts or inputs (in = 1,..., r).  

Then, all possible structures for given number of 

initial nodes “i” can be created. An example of 

generating the sets of structures for the classes with 

numbers of initial nodes from 2 to 6 is shown in 

Figure 2. 

 The numbers of all possible ASC structures for 

arbitrary class of a network can be determined by 

the following manner. We first need to calculate 

the sum of non-repeated combinations for each 

class 

of ASC structures through the so called the 

Cardinal Number [28]. The individual classes are 

determined by number of initial nodes “i”. Then, 

for any integer v ≥ 2, we denote Cardinal Number 

by S(v) the finite set consisting of all q-tuples (v1, . 

. . , vq) of integers v1, . . . , vq ≥ 2 with v1 + · · · + 

vq ≤ v, where q is a non-negative integer 

Figure 2. Graphical models of the selected classes 

of ASC structures. 

 

 

The Cardinal Number #S(v) of S(v) is equal to p(v) 

− 1, where p(v) denotes the number of partition of 

“v”, which increases quite rapidly with the number 

of initial nodes “i”. For instance, for i = 2, 3, 4, 5, 

6, 7, 8, 9, 10, the cardinal numbers #S(v) are given 

by 1, 2, 4, 6, 10, 14, 21, 29, 41 (A000065 

sequence), respectively [29]. Subsequently, for 

each non-repeated combination “K”, a 

multiplication coefficient “M(K)” has to be 

assigned. The combination “K” is established based 

on the number of inputs to the final assembler “in” 

which is situated in tier tm (see Figure 3). 

Figure 3. The transition of graphical ASC networks 

to the numerical combinations for i = 5. 
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A critical step in determining all possible 

combinations of ASC structures for a given class 

(starting with a class for i = 2) are rules by which 

we can prescribe a multiplication coefficient 

“M(K)”. In the case when we consider the number 

of initial nodes equals 2, there is only one 

numerical combination K = (1;1) corresponding 

with appropriate graphical model of assembly 

supply chain structure, and thus M(1;1) = 1. 

Similarly, for each non-repeated numerical 

combination “K” an exact logic rule has to be 

found. Accordingly we can formulate the following 

rules: 

R1: If the numerical combination “K” consists only 

of numeric characters (digits), assigned by symbol 

“n”, n ≤ 2, e.g. K = (2;1) or K = (2;2;1) then M(2;1) 

or M(2;2;1) = 1. R2: If the numerical combination 

“K” consists just of one digit “3” and other digits 

are < 3, e.g., K = (3;1) or (3;2;2), then M(3;1) or 

M(3;2;2) = 2. R3: If the numerical combination 

“K” consists just of one digit “4” and other digits 

are < 3, e.g., K = (4;2), then M(4;2) = 5. 

 Equally, we could continue to determine 

multiplication coefficients “M(K)” for similar cases 

when numerical combinations “K” consist just of 

one digit ≥ 5 and other digits are < 3 or do not 

appear respectively. Then we would obtain the 

following multiplication coefficients: M(5;1) = 12; 

M(6;1) = 33; M(7;1) = 90; M(8;1) = 261; etc.. The 

multiplication coefficients for the given classes 

∑M(i) in such case, follow the Sloane Integer 

sequence 1, 2, 5,…, 261, 766, 2312, 7068,… 

(A000669 sequence) [30], and are depicted in 

Table 1. 

 

For other cases the following rules can be applied:  

R4: If the numerical combination “K” consists of 

arbitrary number of non-repeated digits assigned as 

“j,k,l,…, z” that are ≥ 3 and other digits in the 

combination are < 3 or do not appear respectively, 

then the following calculation method can be used: 

 M( ) j k l z = M j  Mk  Ml Mz ,..., , ,, ,..., (1) 

 In order to apply this general rule under conditions 

specified in R4 the following examples can be 

shown: M( ) () () 4;3 = M 4  M 3 = 5 2 =10 (2) 
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 M( ) () () () 5;4;3 = M 5  M 4  M 3 =125 2 

=120 (3) 

 M( ) ( ) ( ) ( ) () 6;3;2;1 = M 6  M 3  M 2  M 1 

= 33 211 = 66 (4) 

 R5: If the numerical combination “K” consists just 

of two digits “3” and other digits in the 

combination are < 3 or do not appear respectively, 

then M(3;3) = 3. Calculation of this multiplication 

coefficient can be formally expressed in this 

manner: 

M(3;3) = M 3 + (M 3 −1) M3,3 = 2 +1 = 3       (5) 

R6: If the numerical combination “K” consists just 

of two digits “4” and other digits in the 

combination are < 3 or do not appear respectively, 

then M(4;4) = 15. Thus, M(4;4) is computed 

similarly to Equation (5): 

M(4;4) = M 4 + (M4 −1 )+ (M4 − 2 + (M4− 3) + (M4 − 

4)  M4;4 = 5 + 4 + 3 + 2 +1 =15 (6) 

R7: If the numerical combination “K” consists just 

of two digits “5” and other digits in the 

combination are < 3 or do not appear respectively, 

then M(5;5) = 78 and the multiplication coefficient 

is computed similarly as Equations (5) and (6): 

M(5,5) = M 5 + (M5−1 )+ (M5 − 2 + (M5− 3) + (M5− 

4)+ (M5−5 )+ (M5 − 6)  

+ (M5− 7) + (M5− 8)+ (M5−9 )+ (M5 − 10)+ (M5− 

11)  M(5,5)= 12 +11+10+9+8+7+6+5+4+3+2+1= 78 

Analogously, we can calculate multiplication 

coefficients “M(K)” for arbitrary cases when 

numerical combinations “K” consist just of two 

digits n≥3 and other digits in the combination are < 

3 or do not appear respectively. For such cases we 

can calculate the multiplication coefficients by this 

equation:  

 

R8: If the numerical combination “K” consists just 

of three digits “3” and other digits in the 

combination are < 3 or do not appear respectively, 

then M(3;3;3) = 4. Calculation of this 

multiplication coefficient can be formally 

expressed in this manner: 

 

R9: If the numerical combination “K” consists just 

of three digits “4” and other digits are < 3 or do not 

appear respectively, then M(4;4;4) = 15. 

Calculation of this multiplication coefficient can be 

formally expressed in this manner: 

 

R10: If the numerical combination “K” consists 

just of three digits “5” and other digits in the 

combination are < 3 or do not appear respectively, 

then M(5;5;5) = 78. Calculation of this multiplication 

coefficient can be formally expressed in this 

manner: 

  

 

A general rule to calculate the multiplication 

coefficients “M(K)” for arbitrary cases (when 
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numerical combinations “K” consist just of three 

digits n ≥ 3 and other digits in the combination are 

< 3 or do not appear respectively) can be derived 

using the previous rules R8, R9 and R10 a formally 

can be expressed as: 

 

Obviously, there are other specific cases of 

numerical combinations for which multiplication 

coefficients can be formulated in exact terms. 

The Concept of Quantitative Complexity Scale 

for ASC Networks 

Basically, the comparison of complexity is of a 

relative and subjective nature. It is also clear that 

through a relative complexity metric we can 

compare the complexity of the existing 

configuration against the simplest or/and the most 

complex one from the same class of ASC network. 

Perhaps, the most important feature of the relative 

complexity metric is that we can generalize it to 

other areas [35]. Accordingly, when we apply this 

complexity measure for the complete graphs with 

v(v−1)/2 edges we can get upper bounds for 

configuration complexity of any ASC structure 

with a given number of vertices. Obtained upper 

bounds derived from complexity values of selected 

complete graphs are shown in Figure 7. 

 

When considering the fact that obtained complexity 

values for the complete graphs grow larger and 

larger, while complexity values of ASC structures 

for ascending ordered classes grow smaller and 

smaller it gives a realistic chance to establish 

quantitative complexity degrees of ASC networks. 

Under this assumption, arbitrary ASC networks can 

be categorize into quantitative configuration 

complexity degrees that are shown in Figure 8. In 

such case, the actual question arises regarding how 

many degrees of structural complexity are really 

needed to comprise all ASCs that we know exists. 

The seven-degree scale of structural complexity is 

based on inductive reasoning. For example, upper 

bound for configuration complexity of ASC 

networks with i = 10 equals 40.04. Indeed, it is 

very presumable that practically all realistic ASC 

networks wouldn’t reach higher structural 

complexity than 216 what presents structural 

complexity for K9. However, in this context, it is 

necessary to take under consideration a relation 

between complexity and usability [36]. In this case 

it would be needed to estimate an optimal degree of 

structural complexity under when the usability of 

ASC networks is critical for its success. 

 

Conclusions 
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 The main contributions of this paper consist of the 

following four aspects:  

(1) A new exact framework for creating topological 

classes of ASC networks is developed. This 

methodological framework enables one to 

determine all relevant topological graphs for any 

class of ASC structure. The usefulness of such a 

framework is especially notable in cases when it is 

necessary to apply relative complexity metrics to 

compare the complexity of the existing 

configuration against the simplest or/and the most 

complex one. 

 (2) In order to parameterize properties of vertices 

of the ASC networks, an efficient method to 

identify total number of the graphs with non-

repeated sets of vertex degrees structure is 

presented. The determination of the non-repeated 

sets of vertex degrees structure (for selected classes 

of ASC networks are described in Figure 5) shows 

that the total numbers of such graphs follows the 

Omar integer sequence [37], with the first number 

omitted. 

 (3) The Vertex degree index was applied to a new 

area of configuration complexity.  

(4) The quantitative object-oriented model for 

defining degrees of configuration complexity of 

ASC networks was outlined.  

The proposed approach to relative complexity 

assessment may easily be applied at the initial 

design stages as well as in decision-making process 

along with other important considerations such as 

operational complexity issues. However, this 

research path requires further independent research 

to confirm this preliminary results and proposals. 
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